金属製蒸し器を用いた Wi-Fi の受信電力向上に関する研究

2015sc027 井上直紀 2015sc047 近藤啓彬

指導教員:藤井勝之

1 はじめに

現在, Wi-Fi(Wireless Fidelity)は, 有線を使うことな く簡単にネットワークに接続し,高速で電波の送受信を可 能にした.Wi-Fi は日常生活で欠かせないものとなり,誰 もが使用できる環境となっている.しかし,距離が遠くな るほど接続状態が悪くなり通信できなくなると言った問題 や,壁などの障害物に影響され,受信電力が低下し通信速 度が遅くなるといった問題が挙げられる. 出力電力の大き さを変更させることが可能であれば解決することは簡単で はあるが,出力電力を変更することは電波法によって制限 されているため,私達は受信側の電力強度を向上させ,上 記の問題を解決させることに着目した.

本研究では,金属製蒸し器と半波長ダイポールアンテナ を用いて, 2.4GHz 帯における Wi-Fi の電波強度の向上に 関して, FDTD 法を用いたシミュレーションと, 実際に作 製した半波長ダイポールアンテナを用いた実測の二つの観 点から提案手法の有効性を検討する.

2 研究方法

ここでは本研究で用いる用語について記す.

2.1 FDTD 法とは

時間領域差分法 (FDTD 法)は, 空間・時間的に差分化 したマクスウェル方程式を時間ステップ毎に解き、電磁場 を求める手法である.人体モデルのように,多くの分散性 媒質が複雑な形状をなすようなモデルの解析を得意とす る.そして,時間領域ソルバーであるため,フーリエ変換 することにより,広帯域の結果を一度の解析で得ることが できる.

また,モデルの規模の増大に対する必要メモリの増加率 が,他のアルゴリズムに比べて低く抑えられる特徴がある. [1]

2.2 リターンロス

リターンロスを求めるためにまず反射係数について説明 する.線路上の任意の点における入射電圧波と反射電圧波 に分解し,特性インピーダンスの平方根で規格化した正規 入射波を正規反射波で割ったものの比を反射係数という. アンテナの特性インピーダンス Z₀の給電線路に負荷イン ピーダンス Z_l が接続されている場合の負荷の位置におけ る反射係数は

$$\Gamma = \frac{Z_i - Z_0}{Z_i + Z_0}$$

シベル変換し評価しなければならない.デシベル変換する 2.4GHz 帯で共振するようにモデル化する.(図1).

 $RL = -20 \log_{10} |S_{11}| dB$

上記の式の RL の値が-10dB に以下の時一般的にアンテナ と動作しているといえる [2].

2.3 利得

ための式は

アンテナへの入力電力が等方的に放射すると仮定したと きの放射強度に対する与えられた方向における放射強度の 比を,アンテナの利得という[3].

特に指定がないときは,利得gは最大放射方向の利得を 意味している.

利得 g の dB 表示は

$$G_{dB} = 10 \log_{10} G$$

により与えられる.その際の単位は dB ではなく dBi を用 いて表す.dBiのiは等方性アンテナを利得の基準として 表しているという意味である.

2.4 半波長ダイポールアンテナ

直線状導体の中央から高周波電流を給電するアンテナを ダイポールアンテナといい, 全長が波長の 1/2 のものを半 波長ダイポールアンテナという.半波長ダイポールアンテ ナは先端で電流が最小になり,先端から /4の位置にある 給電点で最大値をとる.左右の素子を流れる電流が大地に 対して平衡している平衡型アンテナである.導体の向きが 地面に対して水平であれば水平ダイポールアンテナ,垂直 であれば垂直ダイポールアンテナといい,それぞれの指向 性は,水平面内指向性が8の字型,垂直面内指向性が無指 向性である.

3 シミュレーション

ここで今回行うシミュレーションの詳しい条件について 記す.

3.1 モデル化条件

表1 半波長ダイポールアンテナの条件

エレメント長	27mm
波長	108mm
給電点	50
バラン	27mm
周波数	2.45GHz

となる.また,リターンロス RL を求めるために をデ 表1のエレメントの長さは,蒸し器の有無に関わらず

図1 設計する半波長ダイポール

表2 蒸し器のモデル化の条件

蒸し器の高さ	30mm
蒸し器の上辺の横の長さ	230mm
蒸し器の下辺の横の長さ	140mm
蒸し器の厚さ	0.3mm
素材	完全導体

蒸し器の底面を 0mm とし,底面からの高さを h[mm] と 置く.hの位置にアンテナを設置し S₁₁ と利得の性能を評 価していき最適なアンテナの設置位置を探していく.

0.3mm

図2 モデル化した蒸し器

4 実測方法の条件

ここで,今回行う放射指向性の実測の詳しい条件について記す.

今回,半波長ダイポールアンテナと,蒸し器付き半波長 ダイポールアンテナの放射指向性の実測を行った.実測に は,図3に示した半波長ダイポールアンテナと蒸し器付き 半波長ダイポールアンテナを用いた.

半波長ダイポールアンテナと,蒸し器付き半波長ダイ ポールアンテナの実測条件は,図4に示すように,地上高 90cm,送信アンテナと受信アンテナの距離を3m,アンテ ナが90°の時に利得が最大になるように設置し,ネット ワークアナライザを用いて*S*₁₁と放射パターンの実測を 行った.また,放射パターンを出す際に2.45GHzの利得

図3 実測に使用したアンテナ

を測定した.

5 シミュレーションと実測結果

ここで,今回行ったシミュレーションと実測の結果につ いて記す.

5.1 アンテナ設置位置の決め方

図 5 に示したのは S_{11} と利得の高さパラメータを表した ものである.図 5 の結果から h=150mm の時に Sparameter が-10 以下かつ最大利得の値が他の高さよりも高い値 をとった.

h=200mmまでシミュレーションを行っていった.しかし,h=200mm以上の高さでは蒸し器の影響を余り受けず,利得の値が本来の半波長ダイポールアンテナの値まで低くなった.そのため,h=150mmの位置でのシミュレーションを行った.

5.2 *S*₁₁ のシミュレーションと実測結果

半波長ダイポールアンテナの S_{11} のシミュレーションと 実測は図 6 のようになる. 概ねシミュレーション結果と 実測は,似たような結果となった. 目標とする 2.4GHz 帯 で,-10dB を下回ることができた.

ナが 90°の時に利得が最大になるように設置し,ネット 蒸し器付き半波長ダイポールアンテナの S₁₁のシミュ ワークアナライザを用いて S₁₁と放射パターンの実測を レーションと実測は図 7 のようになる. 概ねシミュレー 行った.また,放射パターンを出す際に 2.45GHz の利得 ション結果と実測は,似たような結果となった.目標とす

図 6 半波長ダイポールアンテナの S₁₁

図 7 蒸し器付き半波長ダイポールアンテナの S₁₁

る 2.4GHz 帯で, -10dB 以下を下回ることができた.

5.3 放射指向性のシミュレーションと実測結果

半波長ダイポールアンテナの,水平面内指向性のシミュ レーションと実測は,図8のようになる.実測結果は,シ ミュレーションと同じように,8の字の形となり,波形の傾 向は概ね似たような結果となった.

半波長ダイポールアンテナの垂直面内指向性のシミュ レーションと実測は図 9 のようになる.実測結果は,シ ミュレーションと同じように,無指向性となり,波形の傾 向は概ね似たような結果となった.

蒸し器付き半波長ダイポールアンテナの水平面内指向性

図8 半波長ダイポールアンテナの水平面内指向性

図9 半波長ダイポールアンテナの垂直面内指向性

のシミュレーションと実測は図 10 のようになる.実測結 果は,シミュレーションと同じように,8の字の形となり, 波形の傾向は概ね似たような結果となった.

蒸し器付き半波長ダイポールアンテナの垂直面内指向性 のシミュレーションと実測は図 11 のようになる.実測結 果は,シミュレーションと同じように,90°方向で利得が 最大値をとった.波形は木の葉の形となり,波形の傾向は 概ね似たような結果となった.

蒸し器の有無による水平面内指向性の実測結果は図 12 となった.水平面内指向性では,蒸し器をつけた場合の方 が利得が高くなるという結果になった

. 蒸し器の有無による垂直面内指向性の実測結果は図 13 となった. 垂直面内指向性では, 蒸し器をつけた場合の 方が90°方向で利得が高くなることが確認できた.

6 まとめ

今回行った研究結果として, S_{11} の実測において,蒸し 器付きでは S_{11} の値が大きく落ちることがわかった.

放射パターンの実測においては,蒸し器の有無によって, 水平面内指向性で,最大値の差が2.4dBあり,電力は1.74 倍で伝送距離は1.32倍となった.垂直面内指向性で,最

図 10 蒸し器付きダイポールアンテナの水平面内指向性

図 11 蒸し器付きダイポールアンテナの垂直面内指向性

大値の差が 2.4dB あり, 電力は 1.74 倍で伝送距離は 1.32 倍となった.

以上のことから,半波長ダイポールアンテナに,金属製の蒸し器を取り付けることによって蒸し器を付ける以前の 電波と反射した電波が組み合わさり,受信電力が向上した と考えられる.

7 終わりに

本研究では,アンテナに蒸し器を取り付けることによっ て,電波強度が強くなることが確認できた.また,XFdtd を用いたシミュレーション上でも,実際には金属製の蒸し 器の素材がステンレス製であることや,金属製の蒸し器自 体に穴が開いていない状態で,シミュレーションを行って いる点も改善していかないと行けないところである.

最後に,放射指向性を計測する実測において,計測場所 をS棟と実験棟の間の広間で行っている.そのため,私 達が測定を行った2.45GHz帯のWi-Fiや,建物による反 射波の影響が考えられるため,次回実測をする際には,開 けきったグラウンドなどで実測を行う必要があると考えら れる.

図12 蒸し器の有無による水平面内指向性

図13 蒸し器の有無による垂直面内指向性

8 参考文献

参考文献

- [1] 吉川 忠久, "1·2 陸技受験教室 無線工学 B," 学校法人 東京電機大学 東京電機大学出版局,東京,2000.
- [2] 橋本 修, "FDTD 法の基礎, 実践 FDTD 時間領域差分法," pp.2-7, 森北出版株式会社, 東京, 2006.
- [3] 石井 望, "アンテナ基本測定法 Antenna Basic Metrology,"株式会社 コロナ社,東京, 2011.
- [4]橋口弘明,山岸竜之介,安井元規,"折り返しダイポー ルアンテナによる人体への熱作用の低減および広帯域 化に関する研究,"第5章,南山大学情報理工学部シス テム創成工学科 2015 年度学士論文,2015.
- [5] 榊原拓馬,"人体近傍に配置された2線式折り返しダ イポールアンテナの広帯域化に関する研究,"第2章, 第3章,南山大学大学院理工学研究科2013年度修士論 文,2013.