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1 Introduction

A mobile robot is more and more widely used in in-
dustry, especially unmanned ground vehicles play role
in many fields because of their advantages being able
to use it for many applications where it may be incon-
venient, or impossible to carry a human operator. The
basic task in controlling these kind of mobile robots is
trajectory tracking. What makes the tracking control
problem a difficult one is its nonlinear characteristic. In
the area of trajectory tracking study, the PID control
algorithm has been used in order to control a mobile
robot. However, because of the nonholonomic structure
of a mobile robot and the complicated change of lane
curvature, the PID gains cannot be tuned easily.
In this paper, the two-wheeled mobile robot tracks a

given trajectory using a neural network controller itself
without using the PID controller. The mobile robot has
only three binary sensor to get its position. We use the
structure of the novel PID-like neural network controller
(PIDNNC) [1] to design the neural network controller.
In the output layer of the neural network controller, we
propose applying sigmoid function as an activation func-
tion, which is not usually used in the output layer but
in hidden layer, in order to consider input saturation of
motors. We also propose the neural network controller
with using two kinds of derivatives, and the cost func-
tion in consideration of suppressing oscillating motion
of the the robot.

2 Modeling

In this research, a two-wheeled mobile robot is used as
a plant. The schematic diagram of the two-wheeled mo-
bile robot is shown in Figure 1. For this model, we have
the following dynamical model described by [2]. The
variables and physical parameters are shown in Table 1.
The equation of the mobile robot is given as follows;

Table 1 Physical parameters
mass of the body m [kg]

input voltage to each motor Vr, Vl [V]
moment of inertia of each wheel Iw [kgm2]
moment of inertia of the body Ic [kgm2]

resistance of motor Rm [Ω]
motor torque τr, τl [Nm/A]

Counter electromotive force of motor Kb [Vs/rad]
motor torque constant Kt [Nm/A]

wheel radius r [m]
angle of each wheels ϕr, ϕl [rad]

heading angle of the body θ [rad]
center position of the body (xm, ym) [m]

distance between wheel center
and center of the body d [m]

gear ratio from motor to wheel n [−]
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Figure 1 Two-
wheeled mobile robot

Figure 2 Structure of neural
network
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The relation between torque of the motor/wheel and
input to the motor/wheel can be written as;[
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The two-wheeled mobile robot has only three binary
sensors which return “0” when the trajectory is detected
or “1” when the background is detected. We introduce
the error e1(k) shown in Table 2 as the distance between
the position of the robot and the trajectory.

Table 2 Definition of the error e1(k)
e1(k) y(k)
+3 (positive large) [1, 1, 1] & e1(k − 1) > 0
+2 (positive middle) [0, 1, 1]
+1 (positive small) [0, 0, 1]
0 (on the trajectory) [1, 0, 1], [0, 0, 0]

−1 (negative small) [1, 0, 0]
−2 (negative middle) [1, 1, 0]
−3 (positive large) [1, 1, 1] & e1(k − 1) < 0

Even though the distance/error e1(k) is not accurate,
we consider the following direction e2(k) as a sort of
backward derivative.
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3 Structure of neural network controller

We consider the following PD-like neural network con-
troller fPDNN for the trajectory tracking problem;

u(k) = fPDNN (e1(k), e2(k)) (5)
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where, u(k) is steering input for the mobile robot. We
use the structure of PIDNNC [1] for the PD-like neu-
ral network controller. The structure of the PD-like
neural network controller is shown in Figure 2. The
functions f1(·), f2(·), and f3(·) are activation func-
tions in the hidden layer, which are represented by
f1(x) = f2(x) = f3(x) = x in this research. The weights
of output layer are wj = 1 (j = 1, 2, 3). The function
fo(·) is the activation function in the output layer given
by

fo(x) =
Kpwm

1 + exp(− 4
Kpwm

x)
− 1

2
Kpwm (6)

where Kpwm is coefficient which determines upper input
limit umaxand lower input limit umin to motors, i. e.
Kpwm = umax − umin.

4 Updating rules for weights

We consider the following cost function J(k) to update
weights of the neural network;

J(k) = J1(k) + J2(k) + γ1J3(k) (7)

J1(k) =
1

2
e1(k)

2, J2(k) =
1

2
e2(k)

2 (8)

J3(k) =
1

2

u(k − 1)2

γ2(e21Max − e1(k)2) + 1
, e1Max = 3 (9)

where γ1 and γ2 ≫ 1 are positive constants to determine
the effect of J3(k) on J(k). The cost function J3(k) is
introduced to avoid oscillation.
We use the gradient descent and back propagation to

derive the rule of updating weights. Let fs(·) be as
follows;

fs(x) =
1

1 + exp(− 4
Kpwm

x)
(10)

The rule of updating weights wij , (i = 1, 2), (j = 1, 2, 3)
in hidden layer is as follows;

wij(k) = wij(k − 1) + ∆wij(k − 1) (11)

∆wij(k − 1) = −ηij
∂J(k)

∂wij(k − 1)
(12)

= −ηij{
2∑

i=1

(
ei(k)sgn

[
ei(k)− ei(k − 1)

u(k − 1)− u(k − 2)

])
+ γ1(

γ2e1(k)u(k − 1)2

{γ2(9− e1(k)2) + 1}2

· sgn
[

e1(k)− e1(k − 1)

u(k − 1)− u(k − 2)

]
+

u(k − 1)

γ2(9− e1(k)2) + 1
)}

· 4 · fs(ao(k − 1)){1− fs(ao(k − 1))}ei(k − 1) (13)

where, constants ηij ’s are the learning coefficients.

5 Simulation

We present the effectiveness of two different controllers
in simulations to analyze contribution of the controllers;
PDNN(e1, e2), PDNN(e1), which are PD-like neural net-
work controller using e1 and e2, and PD-like neural
network controller using only e1, respectively. We also
present the effectiveness of J3(k) which is the term of
the cost function J(k).
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Figure 3 Sum of squared
error for each lap
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Figure 4 Sum of squared
error for every 10[s]

To consider the control performance, we use the evalu-
ation function which calculate the sum of squared error
defined as Jse =

∑
e1(k)

2 . Figure 3 shows the con-
trol performance evaluated by Jse for each lap. Black
solid line, blue dash-and-dotted line, red dashed line,
and magenta dotted line indicate Jse for each lap via
PDNN(e1, e2) with or without J3(k) and PDNN(e1)
with or without J3(k) respectively. PDNN(e1, e2) shows
better performance than the others that uses only one
derivative, and PDNN with J3(k) shows better perfor-
mance than the others without J3(k). It seems that
two redundant derivatives and J3(k) improve the con-
trol performance.

6 Experiment

Figure 4 shows the control performance evaluated by
Jse for every 10[s]. Black solid line, blue dash-and-
dotted line, red dashed line, and magenta dotted line
indicate Jse for each 10[s] via PDNN(e1, e2) with or
without J3(k) and PDNN(e1) with or without J3(k)
respectively. PDNN(e1, e2) shows better performance
than PDNN(e1), and the controller with J3(k) shows
better performance than the controller without J3(k).
Experimental results also indicate that two redundant
derivatives and J3(k) improve the control performance.

7 Conclusion

In this paper, the effectiveness of the neural network
controllers for a two-wheeled mobile robot is presented.
We propose 1. applying sigmoid function in output
layer, 2. using the redundant information e2 as the input
for the controller, and 3. deriving the learning algorithm
from the cost function including J3(k). The updating
rules for weights in hidden layer are given by using the
back propagation algorithm applied sign function, and
weights can be updated on-line. Simulation and exper-
imental results show that the neural network controller
which uses the error e2(k) and the cost function J3(k)
contributes considerably to get better performance.
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