バックラッシュを考慮したベルト駆動の H_{∞} 制御

2013SE261 吉田 賢司 指導教員:高見 勲

1 はじめに

本研究で用いられるベルト駆動は現在、ベルトコンベア などの工作機械、または自動車におけるトランスミッショ ン手法の一つである CVT に実用化されている.本研究の ベルト駆動のモデリングではアイドラプーリー (減速機) と駆動側のダイナミクスを連立することで負荷側のプー リーと駆動側のプーリーのダイナミスクのみで制御対象を 扱っている.本研究では [1] を参考にする. [1] では、従来 のモデルにバックラッシュを外乱として考慮し、変動パラ メータであるドライブディスクとロードディスクの慣性 モーメントのロバスト性を保証するために、行列ポリトー プ表現を用い, H_∞ 制御でシミュレーションまで行ってい る.本研究では、実験機に実装を行い、安定性を確かめ、 より良い制御器設計を目指すことを目標とする.新規性と して,バックラッシュを外乱として考えた H_∞ 制御に行列 行列ポリトープ表現でロバスト性を保証し、実験機に実装 することがあげられる.

2 モデリング

制御対象の各名称と物理パラメーターを表1に示す.ベルト駆動の図を図1に示す. 表1 物理パラメータ

名称	記号	単位
ロードディスクの半径	r_l	[m]
ドライブディスクの半径	r_d	[m]
アイドラプーリがドライブディスクを回転させる半径	r_{pd}	[m]
アイドラプーリがロードディスクを回転させる半径	r_{pl}	[m]
ドライブディスクの慣性モーメント	J_d	$[kg \cdot m^2]$
アイドラプーリの慣性モーメント	J_p	$[kg \cdot m^2]$
ロードディスクの慣性モーメント	J_l	$[kg \cdot m^2]$
ドライブディスクの粘性摩擦係数	c_d	[Ns/rad]
ロードディスクの粘性摩擦係数	c_l	[Ns/rad]
ドライブディスクとロードディスクとのギア比	gr_{dl}	
ドライブディスクとアイドラプーリとのギア比	gr_{di}	
アイドラプーリとロードディスクとのギア比	gr_{il}	
入力トルク	τ	[Nm]

図1 ベルト駆動のモデル

ドライブディスクの角度を θ_d ,角速度を $\dot{\theta}_d$,アイドラ プーリーの角度を θ_p ,ロードディスクの角度を θ_l ,角速 度を $\dot{\theta}_l$ とする.また,ドライブディスクとアイドラプー リー間で働く二つの力をそれぞれ F_1 , F_2 とし,ロードディ スクとアイドラプーリー間で働く二つの力をそれぞれ F_3 , F_4 とした.今回のモデリングでは、ロードディスクと アイドラプーリーの運動方程式を連立させ、アイドラプー リーのダイナミクスを消去した.この消去したモデルに, バックラッシュを外乱として考慮したドライブディスクの 式を(1),ロードディスクの式を(2)に示す[2].

$$J_{d}^{*}\ddot{\theta}_{d}(t) = \tau(t) - c_{d}\dot{\theta}_{d}(t) - K_{L}gr_{dl}^{-2}\theta_{d}(t) + K_{L}gr_{dl}^{-1}\theta_{l}(t) - K_{L}gr_{dl}^{-1}d_{\alpha}(t)$$
(1)

$$J_{l}\theta_{l}(t) = -c_{l}\dot{\theta}_{l}(t) + K_{L}gr_{dl}^{-1}\theta_{d}(t) - K_{L}\theta_{l}(t) + K_{L}d_{\alpha}(t) \quad (2)$$
$$(K_{L} \triangleq 2K_{pl}r_{l}^{2}, J_{d}^{*} \triangleq J_{d} + gr_{dl}^{-2}J_{p})$$

ここで、外乱 d_{α} は以下のように定義される.

$$d_{\alpha}(t) = \begin{cases} -\alpha & (gr_{dl}^{-1}\theta_d - \theta_l > \alpha) \\ -gr_{dl}^{-1}\theta_d + \theta_l & (|gr_{dl}^{-1}\theta_d - \theta_l| < \alpha) \\ +\alpha & (gr_{dl}^{-1}\theta_d - \theta_l < -\alpha) \end{cases}$$
(3)

 α はバックラッシュの角度である.

3 状態空間表現

状態変数と入力,外乱を以下に定義する.

$$x(t) = [\theta_d, \dot{\theta}_d, \theta_l, \dot{\theta}_l]^{\mathrm{T}}, u(t) = \tau, w(t) = d_\alpha(t)$$

これより、制御対象の状態空間表現が以下に与えられる.

$$\begin{cases} \dot{x}(t) = Ax(t) + B_1 w(t) + B_2 u(t) \\ y(t) = Cx(t) \end{cases}$$
(4)
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{K_L g r_{dl}^{-2}}{J_d^*} & -\frac{cd}{J_d^*} & \frac{K_L g r_{dl}^{-1}}{J_d^*} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{K_L g r_{dl}^{-1}}{J_d^1} & 0 & -\frac{K_L}{J_l} & -\frac{c_l}{J_l} \end{bmatrix}$$
$$B_1 = \begin{bmatrix} 0 \\ \frac{K_L g r_{dl}^{-1}}{J_d^1} \\ 0 \\ \frac{K_L g r_{dl}^{-1}}{J_d^1} \end{bmatrix} B_2 = \begin{bmatrix} 0 \\ \frac{1}{J_d^*} \\ 0 \\ 0 \end{bmatrix} C = \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$$

4 最適サーボシステム

定常状態の誤差をなくすために、最適サーボシステムを 考慮した. 出力 y(t) と目標値 r(t) との間の誤差を e(t) と する. 状態変数を $x_e(t)^{T} = [x(t) \int e(t)]^{T}$ とすると、最 適サーボシステムは以下で表現できる.

$$\begin{cases} \dot{x}_e(t) = A_e x_e(t) + B_{1e} w(t) + B_{2e} u(t) \\ y(t) = C_1 x_e(t) \end{cases}$$
(5)

ここで行列 A_e , B_{1e} , B_{2e} , C_1 , w(t) は以下である.

$$A_e = \begin{bmatrix} A & 0_{4\times 1} \\ -C & 0 \end{bmatrix}, \ B_{1e} = \begin{bmatrix} B_1 & 0_{4\times 1} \\ 0 & 1 \end{bmatrix},$$
$$B_{2e} = \begin{bmatrix} B_2 \\ 0 \end{bmatrix}, \ C_1 = \begin{bmatrix} C & 0 \end{bmatrix}, \ w(t) = \begin{bmatrix} d_\alpha \\ r \end{bmatrix}$$
(6)

5 行列ポリトープ表現

本研究では、慣性モーメント J_d^* , J_l のロバスト性を保証 するために、 J_d^* , J_l を以下のように指定した.

$$\{J_{dmin}^{*}, J_{lmin}\}, \{J_{dmax}^{*}, J_{lmax}\} \{J_{dmin}^{*}, J_{lmax}\}, \{J_{dmax}^{*}, J_{lmin}\}$$
(7)

行列ポリトープ表現を使うことにより,行列 A_{ei} , B_{1ei} , B_{2ei} の端点の範囲を以下のように示す.

$$\begin{split} &A_{ei}(i=1,\ 2,\ 3,\ 4),\\ &B_{1ei}=(i=1,\ 2,\ 3,\ 4),\ B_{2ei}(i=1,\ 2,\ 3,\ 4) \end{split}$$

もし,それぞれの端点が安定するなら,端点の間の安定化 されると考える.

6 *H*_∞ 制御

(4) 式より, H_{∞} 制御のシステムを以下に定義した.

$$\begin{cases} \dot{x}_e(t) = A_e x_e(t) + B_{1e} w(t) + B_{2e} u(t) \\ z(t) = C_2 x_e(t) + D_2 u(t) \end{cases}$$

$$C_2 = \begin{bmatrix} W_x & 0_{4\times 1} \\ 0 & W_e \\ 0 & 0 \end{bmatrix}, D_2 = \begin{bmatrix} 0_{4\times 1} \\ 0 \\ W_u \end{bmatrix}$$
(8)

ここで, z(t) は評価出力とする. $W_x \succ 0$, $W_e \succ 0$, $W_u \succ 0$ はそれぞれ,重み行列,積分器,入力に対する重みとする. この制御器について,外乱 w(t) から評価出力 z(t) までの H_{∞} ノルムを最小化する. もし, H_{∞} ノルムが γ_{∞} より小さいものが存在するなら,最悪な外乱に対しても外乱を抑える効果を保証することができる.

変数変換を行い, LMI 条件を定式化したものを以下に示す.

$$\begin{array}{l} \mininimize: \gamma_{\infty} \\ subject to: X \succ 0 \\ \begin{bmatrix} XA_{ei}^{\mathrm{T}} + A_{ei}X + B_{2ei}Y + Y^{\mathrm{T}}B_{2ei}^{\mathrm{T}} & * & * \\ C_{2}X + D_{2}Y & -\gamma_{\infty}I & 0 \\ B_{1ei}^{\mathrm{T}} & 0 & -\gamma_{\infty}I \end{bmatrix} \prec 0 \\ (i = 1, \ 2, \ 3, \ 4) \\ (9) \end{array}$$

このとき,LMI式 (9) を安定化させる,X とY が存在する時,状態フィードバックゲイン $Kx_e(t) = YX^{-1}x_e(t)$ が存在し,このシステムは安定化される.

7 実験結果

本研究では、ロバスト LQ 制御と H_{∞} 制御での実験を 行った.バックラシュの角度を 0.6[deg] := 0.0105[rad] と し、ロードディスクの角度の目標値を $\frac{\pi}{2}[rad]$ とする. W_x , W_e , W_u , 状態フィードバックゲイン K を以下に設定した.

$$W_x = \begin{bmatrix} 0.0001 & 0 & 0 & 0\\ 0 & 0.0001 & 0 & 0\\ 0 & 0 & 0.05 & 0\\ 0 & 0 & 0 & 0.001 \end{bmatrix}, W_e = 0.1,$$
$$W_u = 1.0 \times 10^{-4}$$
$$K = \begin{bmatrix} -0.8553 & -0.0630 & 0.2831 & 0.0001 & [7.8602] \end{bmatrix}$$

行列ポリトープ表現で場合分けされたロードディスクとド ライブディスクの慣性モーメントを考慮し、ロバスト LQ制御と H_{∞} 制御のロードディスクの角度の実験結果の比 較したものを図 2-5 に示す.

図 2-5 より,ロードディスクの角度はロバスト LQ 制御 より H_{∞} 制御の方が目標値 $\frac{\pi}{2}$ [rad] に早く収束し,外乱と して扱っているバックラッシュの影響を抑えることがわ かった.

8 おわりに

本研究では、従来のモデルに最適サーボシステムと H_∞ 制御に行列ポリトープ表現を加えて、ロバスト性を保証し 実験機に実装することに成功した.今後の課題として慣性 モーメントや粘性摩擦またはほかの摩擦などの影響を考慮 した制御器設計を行い、より良い制御器設計を考えたい.

参考文献

- [1] Masatsugu HIBINO: H_{∞} control of Industrial Emulator with backlash, Graduate Program of Mechatronics Graduate School of Science and Engineering Nanzan University, 2016.
- [2] L.Acho, F.Ikhouane, andG.Pujol:Robust Design for Mechanismes with Backlash, JCET Vol.3 Iss.4 October 2013, PP.175-180.